Problems from Partial derivatives

Given the function $$f(x,y)=x^2y^3-2xyz^3$$ calculate the slope of the tangent line at the point $$(1,5)$$ in the direction of the axis $$x$$.

See development and solution

Development:

We have to calculate $$$\dfrac{\delta f}{\delta x}$$$ $$$\dfrac{\delta f}{\delta x}=\dfrac{(1+y)(2x)-(x+y+xy)(2)}{(2x)^2}=$$$ $$$=\dfrac{2x+2xy-2x-2y-2xy}{2\cdot2\cdot x^2}=$$$ $$$=\dfrac{-y}{2x^2}$$$

And now, the slope at $$(1,5)$$

$$$\dfrac{\delta f(1,5)}{\delta x}=\dfrac{-5}{2\cdot1^2}=\dfrac{-5}{2}$$$

Solution:

The slope of the tangent line at the point $$(1,5)$$ in the direction of the axis $$x$$ is descendent, $$\dfrac{-5}{2}$$.

Hide solution and development

Given the function $$f(x,y,z)=xy\cdot\ln(z)$$ calculate the partial derivatives with respect to $$x$$, $$y$$ and $$z$$.

See development and solution

Development:

$$$\dfrac{\delta f}{\delta x}=y\ln(z)$$$

$$$\dfrac{\delta f}{\delta y}=x\ln(z)$$$

$$$\dfrac{\delta f}{\delta z}=0\cdot\ln(z)+xy\cdot\dfrac{1}{z}=\dfrac{xy}{z}$$$

Solution:

$$\dfrac{\delta f}{\delta x}=y\ln(z)$$

$$\dfrac{\delta f}{\delta y}=x\ln(z)$$

$$\dfrac{\delta f}{\delta z}=0\cdot\ln(z)+xy\cdot\dfrac{1}{z}=\dfrac{xy}{z}$$

Hide solution and development
View theory