Problems from Newton's binomial and Pascal's triangle

  1. Calculate the development of $$(2a-b)^3$$.
  2. Calculate the sixth term of $$(x+2y)^{10}$$.
  3. Find the central term of $$(3x^2+ay)^8$$.
  4. What is the term that contains $$x^{20}$$ in the development of $$(x^2-xy)^{13}$$?
See development and solution

Development:

  1. $$$\begin{array}{rl} (2a-b)^3=& \begin{pmatrix} 3 \\ 0 \end{pmatrix} (2a)^3 - \begin{pmatrix} 3 \\ 1 \end{pmatrix} (2a)^3 b + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (2a)^2 b^2 - \begin{pmatrix} 3 \\ 3 \end{pmatrix} (2a) b^3 \\ =& 8a^3-12a^2b+6ab^2-b^3 \end{array}$$$

  2. We will obtain the sixth term doing $$k = 5$$ in the formula: $$$\begin{pmatrix} 10 \\ 5 \end{pmatrix} x^5(2y)^5= \dfrac{10!}{5!5!}x^5 32 y^5=8064 x^5 y^5$$$

  3. The development has $$9$$ terms, then the central is the one that will occupy the fifth place, or the one that is obtained by doing $$k = 4$$ in the general formula: $$$\begin{pmatrix} 8 \\ 4 \end{pmatrix} x^4(2y)^4= \dfrac{8!}{4!4!}81 x^8 a^4 y^4=5670 x^8 a^4 y^4$$$

  4. We have to calculate the value of $$k$$: $$$(x^2)^{13-k}x^k=x^{2(13-k)}x^k=x^{26-k}$$$ $$$x^{26-k}=x^{20} \ \Rightarrow \ 26-k=20 \ \Rightarrow \ k=6$$$ It will be, therefore, the seventh term.

Solution:

  1. $$ 8a^3-12a^2b+6ab^2-b^3 $$

  2. $$8064 x^5 y^5$$

  3. $$5670 x^8 a^4 y^4$$

  4. 7th term.
Hide solution and development
View theory