Problems from Notation, complementary minors and adjoint matrix

Write a $$2\times2$$ matrix and its determinant (only writing, no need to compute it). Then do the same for a $$3\times3$$ matrix.

See development and solution

Development:

If we write the $$2\times2$$ matrix, $$\left(\begin{matrix} 1 & -1\\ 2 & 1 \end{matrix}\right)$$ the determinant is written $$\left|\begin{matrix} 1 & -1\\ 2 & 1 \end{matrix}\right|$$

And the same for the $$3\times3$$ case $$\left(\begin{matrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{matrix}\right) \rightarrow \left|\begin{matrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{matrix}\right|$$

Solution:

The determinant is written $$\left|\begin{matrix} 1 & -1\\ 2 & 1 \end{matrix}\right|$$ and $$\left|\begin{matrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{matrix}\right|$$

Hide solution and development

Find the complementary minor of every element of the main diagonal of the following $$4\times4$$ matrix $$$\left(\begin{matrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 1 \end{matrix}\right)$$$

See development and solution

Development:

We have to find the complementary minors of the elements of the main diagonal, that is, of the elements $$a_{11}, a_{22}, a_{33}, a_{44}$$.

$$$a_{11}=\left(\begin{matrix} \xcancel{1} & \cancel{0} & \cancel{1} & \cancel{0} \\ \bcancel{1} & 1 & 0 & 2\\ \bcancel{1} & 1 & 1 & 0 \\ \bcancel{1} & 2 & 3 & 1 \end{matrix}\right)=\begin{matrix} \left|\begin{matrix} 1 & 0 & 2 \\ 1 & 1 & 0\\ 2 & 3 & 1 \end{matrix}\right| \\ \begin{matrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{matrix}\end{matrix}=$$$ $$$=1\cdot1\cdot1+1\cdot3\cdot2+\cancel{2\cdot0\cdot0}-2\cdot1\cdot2-\cancel{0\cdot3\cdot1}-\cancel{1\cdot0\cdot1}=1+6-4=3$$$

Using the formula of Sarrus to calculate the determinant $$3\times3$$.

The rest of minors must be calculated in the same way

$$$a_{22}=\left(\begin{matrix} 1 & \cancel{0} & 1 & 0 \\ \bcancel{1} & \xcancel{1} & \bcancel{0} & \bcancel{2}\\ 1 & \cancel{1} & 1 & 0 \\ 1 & \cancel{2} & 3 & 1 \end{matrix}\right)=\left|\begin{matrix} 1 & 1 & 0 \\ 1 & 1 & 0\\ 1 & 3 & 1 \end{matrix}\right| = 0 $$$ (since there are repeated rows)

$$$a_{33}=\left(\begin{matrix} 1 & 0 & \cancel{1} & 0 \\ 1 & 1 & \cancel{0} & 2\\ \bcancel{1} & \bcancel{1} & \xcancel{1} & \bcancel{0} \\ 1 & 2 & \cancel{3} & 1 \end{matrix}\right)=\left|\begin{matrix} 1 & 0 & 0 \\ 1 & 1 & 2\\ 1 & 2 & 1 \end{matrix}\right| =$$$ $$$=1\cdot1\cdot1+1\cdot2\cdot0+1\cdot0\cdot2-0\cdot1\cdot1-2\cdot2\cdot1-1\cdot0\cdot1=-3$$$

$$$a_{44}=\left(\begin{matrix} 1 & 0 & 1 & \cancel{0} \\ 1 & 1 & 0 & \cancel{2}\\ 1 & 1 & 1 & \cancel{0} \\ \bcancel{1} & \bcancel{2} & \bcancel{3} & \xcancel{1} \end{matrix}\right)=\left|\begin{matrix} 1 & 0 & 1 \\ 1 & 1 & 0\\ 1 & 1 & 1 \end{matrix}\right| =$$$ $$$=1\cdot1\cdot1+1\cdot1\cdot1+1\cdot0\cdot0-1\cdot1\cdot1-0\cdot1\cdot1-1\cdot0\cdot1=1$$$

Solution:

$$a_{11}=3, a_{22}=0, a_{33}=-3, a_{44}=1$$

Hide solution and development

Find the adjoint matrix $$$A=\left(\begin{matrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{matrix}\right)$$$

See development and solution

Development:

We have to find $$adj(A)$$. The first step is to calculate all the complementary minors.

$$$a_{11}=\left|\begin{matrix} \xcancel{1} & \cancel{0} & \cancel{2} \\ \bcancel{0} & 3 & 1\\ \bcancel{3} & 1 & 0 \end{matrix}\right| = \left|\begin{matrix} 3 & 1 \\ 1 & 0 \end{matrix}\right| = -1$$$

$$$a_{12}=\left|\begin{matrix} 0 & 1 \\ 3 & 0 \end{matrix}\right| = -3$$$

$$$a_{13}=\left|\begin{matrix} 0 & 3 \\ 3 & 1 \end{matrix}\right| = -9$$$

$$$a_{21}=\left|\begin{matrix} 0 & 2 \\ 1 & 0 \end{matrix}\right| = -2$$$

$$$a_{22}=\left|\begin{matrix} 1 & 2 \\ 3 & 0 \end{matrix}\right| = -6$$$

$$$a_{23}=\left|\begin{matrix} 1 & 0 \\ 3 & 1 \end{matrix}\right| = 1$$$

$$$a_{31}=\left|\begin{matrix} 0 & 2 \\ 3 & 1 \end{matrix}\right| = -6$$$

$$$a_{32}=\left|\begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right| = 1$$$

$$$a_{33}=\left|\begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right| = 3$$$

To calculate the adjugate matrix we must bear in mind the signs!

$$$\left(\begin{matrix} + & - & + \\ - & + & - \\ + & - & + \end{matrix}\right)$$$ And finally, $$$adj(A)=\left(\begin{matrix} -1 & 3 & -9 \\ 2 & -6 & -1 \\ -6 & -1 & 3 \end{matrix}\right)$$$

Solution:

$$adj(A)=\left(\begin{matrix} -1 & 3 & -9 \\ 2 & -6 & -1 \\ -6 & -1 & 3 \end{matrix}\right)$$

Hide solution and development
View theory