Problems from Inverse interpolation

We know the following points of the function $$f (x)$$:

$$x$$ $$0$$ $$1$$ $$2$$ $$3$$
$$f(x)$$ $$0$$ $$1$$ $$4$$ $$9$$

Find the value of x $$x$$ such that $$f (x) = 2$$.

See development and solution

Development:

We have a case of inverse interpolation. Therefore we write the points in the table but exchanging the columns.

$$0$$ $$0$$      
    $$\dfrac{1-0}{1-0}=1$$    
$$1$$ $$1$$   $$\dfrac{\dfrac{1}{3}-1}{4-0}=\dfrac{\dfrac{-2}{3}}{4}=-\dfrac{1}{6}$$  
    $$\dfrac{2-1}{4-1}=\dfrac{1}{3}$$   $$\dfrac{-\dfrac{1}{60}+\dfrac{1}{6}}{9-0}=\dfrac{\dfrac{3}{20}}{9}= \dfrac{1}{60}$$
$$4$$ $$2$$   $$\dfrac{\dfrac{1}{5}-\dfrac{1}{3}}{9-1}=\dfrac{\dfrac{-2}{15}}{8}= -\dfrac{1}{60}$$  
    $$\dfrac{3-2}{9-4}=\dfrac{1}{5}$$    
$$9$$ $$3$$      

$$$\begin{array}{rl} P_3(y)=& 0+1\cdot (y-0)-\dfrac{1}{6}(y-0)(y-1)+\dfrac{1}{60}(y-0)(y-1)(y-4)\\ =&y-\dfrac{1}{6}y^2+\dfrac{1}{6}y+\dfrac{1}{60}y^3-\dfrac{1}{60}y^2-\dfrac{1}{15}y\\ =& \dfrac{1}{60}y^3-\dfrac{1}{4}y^2+\dfrac{37}{30}y \end{array}$$$

We evaluate in $$2$$:

$$x\approx P_3(2)=\dfrac{1}{60}\cdot8-\dfrac{1}{4}\cdot4+\dfrac{37}{30}\cdot2= \dfrac{8}{5}=1.6$$

Solution:

$$x=1.6$$

Hide solution and development
View theory